跳转至

Plane Problem Axisymmetric

约 2487 个字 2 张图片 预计阅读时间 17 分钟

2D Problem

二维问题的基本方程

平面应力问题(薄板)

  • 应变-应力关系:
\[ \begin{Bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{Bmatrix} =\begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & 0 \\ -\frac{\nu}{E} & -\frac{1}{E} & 0 \\ 0 & 0 & \frac{1}{G} \end{bmatrix}\begin{Bmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{xy} \end{Bmatrix} \]

其中 \(G =\frac{E}{2(1+\nu)}\)

  • 应力-应变关系:
\[ \begin{Bmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{Bmatrix} =\frac{E}{1-\nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix}\begin{Bmatrix} \varepsilon_{x } \\ \varepsilon_{y} \\ \gamma_{xy} \end{Bmatrix} \]

对应平面应变问题(无限长物体),形式与平面应力问题形式相同,只需要做如下改动:

\[ E_{1} = \frac{E}{1-\nu^{2}} \quad \nu_{1}=\frac{\nu}{1-\nu} \]

将应力应变关系记作原来的矩阵形式:

\[ {\sigma} = {D \varepsilon} \]
  • 两类问题对应的应变位移关系
\[ \begin{Bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{Bmatrix} = \begin{bmatrix} \frac{\partial }{\partial x } & 0 \\ 0 & \frac{\partial }{\partial y } \\ \frac{\partial }{\partial y } & \frac{\partial }{\partial x } \end{bmatrix}\begin{Bmatrix} u \\ v \end{Bmatrix} \triangleq {\varepsilon}=(\nabla \mathbf{u}) \]

我们称 \(\nabla\) 为梯度算子

  • 平衡方程:
\[ \begin{bmatrix} \frac{\partial }{\partial x } & 0 & \frac{\partial }{\partial y } \\ 0 & \frac{\partial }{\partial y } & \frac{\partial }{\partial x } \end{bmatrix}\begin{Bmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{Bmatrix}+\begin{Bmatrix} f_{x} \\ f_{y} \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}\triangleq \nabla^{T} {\sigma}+\mathbf{f}=0 \]
  • 边界条件:
\[ \begin{bmatrix} n_{x} & 0 & n_{y } \\ 0 & n_{y} & n_{x} \end{bmatrix}\begin{Bmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{Bmatrix}= \begin{Bmatrix} \bar{T}_{x} \\ \bar{T_{y}} \end{Bmatrix}\triangleq \mathbf{n}{\sigma} = \bar{\mathbf{T}} \]

位移解法

在二维问题,位移插值可以写作如下形式:

\[ \begin{align} u = \sum_{}^{} N_{i}u_{i} \\ v = \sum_{}^{} N_{i}v_{i} \end{align} \]

矩阵形式:

\[ \begin{Bmatrix} u \\ v \end{Bmatrix}= \begin{bmatrix} N_{1} & 0 & N_{2} & 0 & \dots \\ 0 & N_{1} & 0 & N_{2} & \dots \end{bmatrix}\begin{Bmatrix} u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \\ \vdots \end{Bmatrix}\triangleq \mathbf{u} = \mathbf{Nd} \]

引入记号:

\[ \mathbf{B}= \nabla \mathbf{N} \]

表征应变矩阵

  • 势能:
\[ \Pi_{p} = U +\Omega_{b}+\Omega_{p}+\Omega_{s} \]
  • 应变能:
\[ U = \frac{1}{2 }\mathbf{d}^{T}\left( \int_{V}\mathbf{B}^{T}\mathbf{DB}\,\mathrm{d} V\right) \mathbf{d}= \frac{1}{2}\mathbf{d}^{T}\mathbf{k}_{e}\mathbf{d} \]

\(\mathbf{k}_{e}\) 称为刚度矩阵

  • 体积力作功:
\[ \Omega_{b} = - \int_{V}\mathbf{u}^{T}\mathbf{f}\,\mathrm{d}V=-\int_{V}(\mathbf{Nd})^{T}\mathbf{f}\,\mathrm{d}V = -\mathbf{d}^{T}\left( \int_{V}\mathbf{N}^{T}\mathbf{f}dV \right) \]
  • 集中力作功:
\[ \Omega_{p} = - \mathbf{d}^{T}\mathbf{P} \]
  • 表面外力作功:
\[ \Omega_{s} = -\int_{S}\mathbf{u}^{T}\mathbf{T}_{s}\,\mathrm{d}S = -\int_{S} \left( \mathbf{Nd} \right) ^{T}\mathbf{T}_{s}\,\mathrm{d}S = -\mathbf{d}^{T}\left( \int_{S}\mathbf{N}^{T} \mathbf{T}_{s}\,\mathrm{d}S\right) \]

将上述表达式带入后,最小势能原理给出:

\[ \frac{\delta \Pi_{p}}{\delta \mathbf{d}^{T}} =0 \]

可得:

\[ \mathbf{k}_{e}\mathbf{d} = \underset{ 体力的等效结点力 }{ \int_{V}\mathbf{N}^{T}\mathbf{f}\,\mathrm{d}V }+\underset{ 结点上的集中力 }{ \mathbf{P} }+\underset{ 面力的等效结点力 }{ \int_{S}\mathbf{N}^{T}\mathbf{T}_{s}\,\mathrm{d} S } \]

CST

不同节点数的三角形元素可用于求解二维实体构件。线性三角形元素是为二维实体有限元分析开发的第一种元素。然而,与线性四边形元素相比,线性三角形元素的精确度较低。但三角形元素仍是一种非常有用的元素,因为它能适应复杂的几何形状。如果二维模型的几何形状非常复杂,就需要使用三角形元素。恒应变三角形(CST)是数学上最简单的元素。

alt text

对应型函数:

\[ \begin{align} u(x,y) = a_{1}+a_{2} x + a_{3}y \\ v(x,y) = a_{4}+a_{5}x+a_{6}y \end{align} \]

我们可以得到应变表达式:

\[ \varepsilon_{x}=a_{2},\varepsilon_{y}=a_{6},\gamma_{xy}= a_{3}+a_{5} \]

可见应变都是常量,这就是为什么我们称为常应变三角形

求取参数:已知位移 \(u_{i},u_{j},u_{m},v_{i},v_{j},v_{m}\) 和坐标 \(x_{i},x_{j},x_{m},y_{i},y_{j},y_{m}\) 可确定 \(a_{1},a_{2},a_{3},a_{4},a_{5},a_{6}\) 的值(带入上述表达写成矩阵形式并取逆):

\[ \begin{Bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{Bmatrix} = \frac{1}{2A}\begin{bmatrix} \alpha_{i} & \alpha_{j} & \alpha_{m} \\ \beta_{i} & \beta_{j} & \beta_{m} \\ \gamma_{i} & \gamma_{j} & \gamma_{m} \end{bmatrix} \begin{Bmatrix} u_{i} \\ u_{j} \\ u_{m} \end{Bmatrix} \quad \begin{Bmatrix} a_{4} \\ a_{5} \\ a_{6} \end{Bmatrix} = \frac{1}{2A}\begin{bmatrix} \alpha_{i} & \alpha_{j} & \alpha_{m} \\ \beta_{i} & \beta_{j} & \beta_{m} \\ \gamma_{i} & \gamma_{j} & \gamma_{m} \end{bmatrix}\begin{Bmatrix} v_{i} \\ v_{j} \\ v_{m} \end{Bmatrix} \]

其中

\[ 2A = \begin{vmatrix} 1 & x_{i} & y_{i} \\ 1 & x_{j} & y_{j} \\ 1 & x_{m} & y_{m} \end{vmatrix} = x_{i}(y_{i}-y_{m}) + x_{j}(y_{m}-y_{i})+x_{m}(y_{i}-y_{j}) \]

(考虑行列式的几何意义,可得 \(A\) 为三角形面积)

\[ \alpha_{i} =x_{j}y_{m}-x_{m}y_{j} \quad\alpha_{j}=x_{m}y_{i}-x_{i}y_{m}\quad \alpha_{m}=x_{i}y_{j}-x_{j}y_{i} \]
\[ \beta_{i} =y_{j}-y_{m} \quad\beta_{j}=y_{m}-y_{i}\quad \beta_{m}=y_{i}-y_{j} \]
\[ \gamma_{i} =x_{m}-x_{j} \quad\gamma_{j}=x_{i}-x_{m}\quad \gamma_{m}=x_{j}-x_{i} \]
  • 型函数:
\[ \begin{align} N_{i}&=(\alpha_{i}+\beta_{i}x+\gamma_{i}y)/2A \\ N_{j}&=(\alpha_{j}+\beta_{j}x+\gamma_{j}y)/2A \\ N_{m}&=(\alpha_{m}+\beta_{m}x+\gamma_{m}y)/2A \end{align} \]
  • CST 的位移:
\[ \begin{Bmatrix} u \\ v \end{Bmatrix}=\begin{bmatrix} N_{i} & 0 & N_{j} & 0 & N_{m} & 0 \\ 0 & N_{i} & 0 & N_{j} & 0 & N_{m} \end{bmatrix} \begin{Bmatrix} u_{i} \\ v_{i} \\ u_{j} \\ v_{j} \\ u_{m} \\ v_{m} \end{Bmatrix}\triangleq \mathbf{u} = \mathbf{Nd} \]
  • 位移应变关系:
\[ \begin{Bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{Bmatrix} =\frac{1}{2A} \begin{bmatrix} \beta _{i} & 0 & \beta_{j} & 0 & \beta_{m} & 0\\ 0& \gamma_{i} & 0& \gamma_{j} & 0& \gamma_{m} \\ \gamma_{i} & \beta _{i} & \gamma_{j} & \beta_{j} & \gamma_{m} & \beta_{m} \end{bmatrix} \triangleq {\varepsilon} = \mathbf{Bd} \]
  • 刚度矩阵
\[ \mathbf{k}_{e} =\int_{V}\mathbf{B}^{T}\mathbf{DB}\,\mathrm{d}V = tA(\mathbf{B}^{T}\mathbf{DB}) \]

\(A\) 为元素的面积,\(t\) 为平板厚度,\(\mathbf{k}_{e}\) 式一个 \(6\times{6}\) 对称矩阵

  • 体力对应的结点力:
\[ \mathbf{f}=\begin{bmatrix} X_{b} \\ Y_{b} \end{bmatrix} \]
\[ \int_{V}\mathbf{N}^{T}\mathbf{f}\,\mathrm{d}V = \frac{At}{3}\begin{Bmatrix} X_{b} \\ Y_{b} \\ X_{b} \\ Y_{b} \\ X_{b} \\ Y_{b} \\ \end{Bmatrix} \]

也就是说,体力被均分在结点上

alt text

  • 表面作用力:
\[ \mathbf{T}_{s} = \begin{bmatrix} p_{x} \\ p_{y} \end{bmatrix} \]

一个栗子是我们假定 \(p_{x}=p\) \(p_{y }=0\)

\[ \int_{S}\mathbf{N}^{T}\mathbf{T}_{s}\,\mathrm{d} S = tp \int \begin{Bmatrix} N_{1}(a,y) \\ 0 \\ N_{2}(a,y) \\ 0 \\ N_{3} (a,y) \\ 0 \end{Bmatrix}\,\mathrm{d} y \]

\[ N_{1} = \frac{ay}{2A} \quad N_{2}=\frac{L(a-x)}{2A} \quad N_{3}=\frac{Lx-ay}{2A} \]

则可得

\[ \int_{S}\mathbf{N}^{T}\mathbf{T}_{s}\,\mathrm{d} S = \begin{Bmatrix} \frac{pLt}{2} \\ 0 \\ 0 \\ 0 \\ \frac{pLt}{2} \\ 0 \end{Bmatrix} \]

Applications of the CST Element

  • Use in areas where the strain gradient is small
  • Use in mesh transition areas(fine mesh to coarse mesh)
  • Avoid using CST in stress concentration or other crucial areas in the structure, such as edges of holes adn corners
  • Recommended for quick and preliminary FE analysis of 2D problems

当然除了恒应变三角形之外,我们还有其他二元元素。

如果我们三角形的每个边上再取一个结点,则我们得到了线性应变三角形(Linear Strain Triangle,LST)。取对应位移表达式:

\[ u = a+bx +cy +dx^{2}+ey^{2}+fxy \]

应变:

\[ \varepsilon _{x} =b +2d x+fy \]

可以看出,应变是一个线性函数,他的结果比 CST 拟合效果更好。

矩形(四个结点):

\[ \begin{align} u=a_{1}+a_{2}x+a_{3}y + a_{4}xy \\ v=a_{5}+a_{6}x+a_{7}y + a_{8}xy \end{align} \]

可以得出应变是一个线性函数

模仿LST,我们多取矩形边的中点,可得二次矩形,这是因为应变是二次形的。

  • T3 : linear displacement, constant strain and stress;
  • Q4: bilinear displacement, linear strain and stress;
  • T6: quadratic displacement, linear strain and stress
  • Q8: Cubic displacement, quadratic strain and stress.

Axisymmetric

对于轴对称问题,有:

\[ \frac{\partial (\cdot) }{\partial \theta } =0 \]

位移场:

\[ u=u(r,z) ,w =w(r,z) \]

应变:

\[ \begin{Bmatrix} \varepsilon_{r} \\ \varepsilon_{\theta} \\ \varepsilon_{z} \\ \gamma_{rz} \end{Bmatrix} = \begin{bmatrix} \frac{\partial }{\partial r } & 0 \\ \frac{1}{r} & 0 \\ 0 & \frac{\partial }{\partial z } \\ \frac{\partial }{\partial z } & \frac{\partial }{\partial r } \end{bmatrix}\begin{Bmatrix} u \\ w \end{Bmatrix} \]

应力:

\[ \begin{Bmatrix} \sigma_{r} \\ \sigma_{\theta} \\ \sigma_{z} \\ \tau_{rz} \end{Bmatrix} = \frac{E}{(1+\nu)(1-2\nu)}\begin{bmatrix} 1-\nu & \nu & \nu & 0 \\ \nu & 1-\nu & \nu & 0 \\ \nu & \nu & 1-\nu & 0 \\ 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}\begin{Bmatrix} \varepsilon_{r} \\ \varepsilon_{\theta} \\ \varepsilon_{z} \\ \gamma_{rz} \end{Bmatrix} \]

采用CST划分:

\[ \begin{align} u (r,z) &= a_{1}+a_{2}r+a_{3}z \\ w(r,z) &= a_{4}+a_{5}r+a_{6}z \end{align} \]

如果已知三点的位移 \(u_{i},u_{j},u_{m},w_{i},w_{j},w_{m}\),则同样可以定出:

\[ \begin{Bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{Bmatrix}=\begin{bmatrix} 1 & r_{i} & z_{i} \\ 1 & r_{j} & z_{j} \\ 1 & r_{m} & z_{m} \\ \end{bmatrix}^{-1}\begin{Bmatrix} u_{i} \\ u_{j} \\ u_{m} \end{Bmatrix} \quad \begin{Bmatrix} a_{4} \\ a_{5} \\ a_{6} \end{Bmatrix}=\begin{bmatrix} 1 & r_{i} & z_{i} \\ 1 & r_{j} & z_{j} \\ 1 & r_{m} & z_{m} \\ \end{bmatrix}^{-1}\begin{Bmatrix} u_{i} \\ u_{j} \\ u_{m} \end{Bmatrix} \]
\[ \begin{Bmatrix} u \\ w \end{Bmatrix}= \begin{bmatrix} N_{i} & 0 & N_{j} & 0 & N_{m} & 0 \\ 0 & N_{i} & 0 & N_{j} & 0 & N_{m} \end{bmatrix} \begin{Bmatrix} u_{i} \\ w_{i} \\ u_{j} \\ w_{j} \\ u_{m} \\ w_{m} \end{Bmatrix}\triangleq \mathbf{u} = \mathbf{Nd} \]

系数表达式与平面问题中讨论的相同

  • 应变位移关系:
\[ \begin{Bmatrix} \varepsilon_{r} \\ \varepsilon_{\theta} \\ \varepsilon_{z} \\ \gamma_{xy} \end{Bmatrix} =\frac{1}{2A} \begin{bmatrix} \beta_{i} & 0 & \beta _{j} & 0 & \beta_{m} & 0 \\ 0 & \gamma_{i} & 0 & \gamma_{j} & 0 & \gamma_{m} \\ \frac{\alpha_{i}}{r}+\beta_{i}+\frac{\gamma_{i}z}{r} & 0 & \frac{\alpha_{j}}{r}+\beta_{i}+\frac{\gamma_{j}z}{r} & 0 & \frac{\alpha_{m}}{r}+\beta_{i}+\frac{\gamma_{m}z}{r} & 0 \\ \gamma_{i} & \beta_{i} & \gamma_{j} & \beta_{j} & \gamma_{m} & \beta_{m} \end{bmatrix}\begin{Bmatrix} u_{i} \\ w_{i} \\ u_{j} \\ w_{j} \\ u_{m} \\ w_{m} \end{Bmatrix} \]

记作

\[ {\varepsilon} = \mathbf{Bd} \]

注意 \(1/r\) 项,此时对应的应变并非是一个恒定的数

  • 刚度矩阵
\[ \mathbf{k}_{e} = 2\pi \int_{A} \mathbf{B}^{T}\mathbf{DB}r\mathrm{d}r\mathrm{d}z \]

采用数值积分方法求解

  • 体力:
\[ \begin{align} f_{r} &= \rho r \omega^{2} \\ f_{z}&= - \rho g \end{align} \]

转换为节点力:

\[ \begin{align} &\left\{ f_{b} \right\} = 2\pi \iint_{S} [\mathbf{N}]^{T}\begin{Bmatrix} f_{r} \\ f_{z} \end{Bmatrix}r\mathrm{d}r \mathrm{d}z \\ \implies&\left\{ f_{b} \right\} = \frac{2\pi \bar{r}A}{3}\begin{Bmatrix} \bar{f_{r}} \\ f_{z} \\ \bar{f_{r}} \\ f_{z} \\ \bar{f_{r}} \\ f_{z} \\ \end{Bmatrix}\quad \bar{f}_{r}= \rho \bar{r} \omega^{2} \, \bar{r} = \frac{r_{i}+r_{j}+r_{m}}{3} \end{align} \]
  • 表面力
\[ \begin{Bmatrix} f_{s} \end{Bmatrix} = \iint_{S}[\mathbf{N}]^{T}\begin{Bmatrix} p_{r} \\ p_{z} \end{Bmatrix}\mathrm{d}S = \frac{2\pi r_{j}(z_{m}-z_{j})}{2} \begin{Bmatrix} 0 \\ 0 \\ p_{r} \\ p_{z} \\ p_{r} \\ p_{z} \end{Bmatrix} \]