跳转至

Bar Beam and Plate

约 5493 个字 17 张图片 预计阅读时间 37 分钟

Bar

我们先推导局部(Local)坐标中杆单元方程

Features of a Bar

  • 只受轴向力(tension or compressin)
  • 沿轴向变形
  • 不受剪力和弯矩

alt text

位移函数

\[ \begin{align} &u(x) = u_{i} + \frac{u_{j}-u_{i}}{L}x \\ \implies& u(x) = \left( 1-\frac{x}{L} \right) u_{i}+\frac{x}{L}u_{j} = \begin{bmatrix} N_{i} & N_{j} \end{bmatrix} \begin{Bmatrix} u_{i} \\ u_{j} \end{Bmatrix} \\ & \text{where} N_{i}=1-\frac{x}{L}\quad N_{j}= \frac{x}{L} \end{align} \]

\(N_{i},N_{j}\) 称为形函数,表示在定义域上元素假定位移函数的形状

应力和应变

\[ \begin{align} &\varepsilon = \frac{{\rm{d}} u }{{\rm {d}} x } =\frac{u_{j}-u_{i}}{L} \\ &\sigma = E\varepsilon = E \frac{u_{j}-u_{i}}{L} \end{align} \]

刚度矩阵:

\[ \frac{EA}{L}\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \]

用能量法获取刚度矩阵:

  • 位移
\[ u(x) =\begin{bmatrix} N_{i} & N_{j} \end{bmatrix} \begin{Bmatrix} u_{i} \\ u_{j} \end{Bmatrix} = [\mathbf{N}]\left\{\mathbf{u} \right\} \]
  • 应变
\[ \varepsilon_{x} = \frac{{\rm{d}} u(x) }{{\rm {d}} x } = \frac{{\rm{d}} [\mathbf{N}] }{{\rm {d}} x }\left\{\mathbf{u} \right\} = \left[ \mathbf{B} \right] \left\{\mathbf{u} \right\} \]
  • 应力
\[ \sigma_{x} =E\varepsilon_{x} = [\mathbf{D}][\mathbf{B}]\left\{\mathbf{u} \right\} \quad [\mathbf{D}]=[E] \]

应变矩阵 \([\mathbf{B}]\) 计算了节点位移而产生的应变,材料性质矩阵 \([\mathbf{D}]\) 一般是一个对称矩阵。

杆的势能

\[ \Pi _{p}(u) = U(u)+\Omega(u) \]

其中 \(U\) 为应变能,在杆的问题中为:

\[ \begin{align} U(u)&=\frac{1}{2}\iiint_{V}\sigma_{x}\varepsilon_{x}dV \\ &=\frac{A}{2}\int_{0}^{L}\sigma_{x}^{T}\varepsilon_{x}\mathrm{d}x = \frac{A}{2}\int_{0}^{L} \left\{\mathbf{u} \right\}^{T}[\mathbf{B}]^{T}[\mathbf{D}]^{T}[\mathbf{B}]\left\{\mathbf{u} \right\}\mathrm{d}x \\ &=\frac{AL}{2} \left\{\mathbf{u} \right\}^{T}[\mathbf{B}]^{T}[\mathbf{D}]^{T}[\mathbf{B}]\left\{\mathbf{u} \right\} \end{align} \]

\(\Omega\) 是功,

\[ \begin{align} \Omega &= -\left( f_{i}u_{i}+f_{j}u_{j} \right) -\underbrace{\iint_{S_{1}}u_{s}^{T}T_{x}dS}_{表面载荷作用} \\ &=-\left\{\mathbf{u} \right\}^{T}\left\{ \mathbf{P} \right\}-\iint_{S_{1}}\left\{\mathbf{u} \right\}^{T}\left[ \mathbf{N}_{s} \right]^{T}T_{x}\mathrm{d}S \\ &=-\left\{\mathbf{u} \right\}^{T}\left\{ \mathbf{f} \right\} \\ &\quad \left\{ \mathbf{f} \right\} = \left\{ \mathbf{{P}} \right\}+\underset{ 等效节点力 }{ \iint_{S_{1}}\left[ \mathbf{N}_{s} \right]^{T}T_{x}\mathrm{d}S } \end{align} \]

因此势能可写作

\[ \Pi_{p}=\frac{AL}{2} \left\{\mathbf{u} \right\}^{T}[\mathbf{B}]^{T}[\mathbf{D}]^{T}[\mathbf{B}]\left\{\mathbf{u} \right\}-\left\{\mathbf{u} \right\}^{T}\left\{ \mathbf{f} \right\} \]

由最小势能原理可得

\[ \frac{\partial \Pi_{p} }{\partial \left\{ \mathbf{u} \right\} } \implies AL \left[ \mathbf{B} \right] ^{T}\left[ \mathbf{D} \right] ^{T}\left[ \mathbf{B} \right] \left\{ \mathbf{u} \right\} =\left\{\mathbf{f} \right\} \triangleq[\mathbf{k}] \left\{ \mathbf{u} \right\}=\left\{ \mathbf{f} \right\} \]

将均布载荷转换成节点上的集中力。

\[ \begin{align} &\left\{ \mathbf{f }_{s} \right\} =\iint_{S_{1}}\left[ \mathbf{N}_{s} \right]^{T}T_{x}dS \\ \text{Here }& \left[ \mathbf{N}_{s} \right] =\begin{bmatrix} 1-x/L & x/L \end{bmatrix},\quad T_{x} = q ,\quad dS =dx \\ \implies& \left\{ \mathbf{f}_{s} \right\} =\iint_{S_{1}} \left[ \mathbf{N}_{s} \right]^{T}T_{x}dS = q\int_{0}^{L}\begin{Bmatrix} 1-x/L \\ x/L \end{Bmatrix} \, {\rm d} x = \begin{Bmatrix} qL /2 \\ qL /2 \end{Bmatrix} \end{align} \]

这是为了在运用 \(\mathbf{Ku=F}\) 的时候能确定节点上对应的集中力

在比如说,假定杆上的载荷服从线性关系,即 \(\hat{T}_{x}= C \hat{x}\) ,那么作用在前后节点上的集中力为

\[ \left\{ \mathbf{f}_{s} \right\} =\iint_{S_{1}} \left[ \mathbf{N}_{s} \right]^{T}T_{x}dS = q\int_{0}^{L}\begin{Bmatrix} 1-x/L \\ x/L \end{Bmatrix} Cx\, {\rm d} x = \begin{Bmatrix} CL^{2} /6 \\ CL^{2} /3 \end{Bmatrix} \]

Example

alt text

我们先考虑杆会不会接触到墙面,当右端没有墙时,\(3\) 点位移为

\[ \Delta_{0} = \frac{PL}{EA} = 1.8\mathrm{mm}> 1.2 \mathrm{mm} \]

所以杆会接触到墙壁。

Global 刚度矩阵:

\[ \mathbf{K} =\frac{EA}{L}\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \]

所以待定方程为:

\[ \frac{EA}{L}\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}\begin{Bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{Bmatrix}= \begin{Bmatrix} F_{1} \\ F_{2} \\ F_{3} \end{Bmatrix} \]

边界条件:

\[ u_{1}= 0,u_{3} =\Delta,F_{2} = P \]

可以解得

\[ u_{2} = \frac{1}{2}\left( \frac{PL}{EA}+\Delta \right)=1.5 \mathrm{ mm} \]

收敛性

  • 位移在每个节点(node)上都是准确的,但是在节点之间不一定
  • 每个元素(elements)所受的应力为常量,但是元素之间的应力不是连续的
    • 解的准确性会随着元素数量的增加而提高

在FEA 中,我们采用多项式来描述一个元素的位移。

\[ \begin{align} u(x,y,z) &= a_{0} +a_{1} x+b_{1} y +c_{1}z+\dots \\ &= N_{1}(x,y,z) u_{1}+N_{2}(x,y,z)u_{2}+\dots \\ & = \sum_{i}^{} N_{i}u_{i} \end{align} \]

形函数的性质: 1. 在节点 \(i,N_{i} = 1\),在其他节点 \(N_{i}= 0\) 2. 允许刚体移动:\(\sum_{}^{}N_{i}=1\)

位移函数的完整性和相容性确保 FEA 的收敛性

  • 完备性(Complete):allow for a rigid-body displacement and a constant strain within the element
  • 相容性(Compatible):continuity between adjacent elements and within the elemen
    • \(C^{m}\) 描述了多项式的连续程度,比如说 \(C^{0}\) 表述位移式连续的,\(C^{1}\) 表述位移和其一阶导数是连续的。

alt text

复杂杆

将局部(Local)元素和全局(Global)元素联系起来

取元素与水平方向的夹角为 \(\theta\) ,即定义

\[ C= \cos \theta = \frac{X_{j}-X_{i}}{L}\quad S =\sin \theta =\frac{Y_{j}-Y_{i}}{L} \]

\(u'\) 表示局部元素,\(u\) 为全局元素,则坐标系的变换满足:

\[ \begin{Bmatrix} u_{i}' \\ v_{i} '\\ u_{j} '\\ v_{j}' \end{Bmatrix} =\begin{bmatrix} C & S & 0 & 0 \\ -S & C & 0 & 0 \\ 0 & 0 & C & S \\ 0 & 0 & -S & C \end{bmatrix}\begin{Bmatrix} u_{i} \\ v_{i} \\ u_{j} \\ v_{j} \end{Bmatrix}\triangleq \mathbf{u}' = \mathbf{Tu} \]

\(\mathbf{T}\) 为变换矩阵,其满足 \(\mathbf{T}^{-1}=\mathbf{T}^{T}\)

节点上的力也遵循变换规则

\[ \mathbf{f}' = \mathbf{Tf} \]

对应刚度矩阵

\[ \mathbf{k}=\mathbf{T}^{T}\mathbf{k}'\mathbf{T} \]

展开为

\[ \mathbf{k}=\frac{EA}{L}\begin{bmatrix} C^{2} & CS & -C^{2} & -CS \\ CS & S^{2} & -CS & -S^{2} \\ -C^{2} & -CS & C^{2} & CS \\ -CS & -S^{2} & CS & S^{2} \end{bmatrix} \]

注:每一根杆都有自己的旋转矩阵

alt text

如果全局元素是一个三维问题,则取

\[ \begin{align} l& = \frac{X_{j}-X_{i}}{L}= \cos \theta_{x} \\ m& = \frac{Y_{j}-Y_{i}}{L}= \cos \theta_{y} \\ n& = \frac{Z_{j}-Z_{i}}{L}= \cos \theta_{z} \end{align} \]

则刚度矩阵为

\[ \left[ \mathbf{k} \right] = \frac{AE}{L}\begin{bmatrix} l^{2} & lm & ln & -l^{2} & -lm & -ln \\ lm & m^{2} & mn & -lm & -m^{2} & -mn \\ ln & mn & n^{2} & -ln & -mn & -n^{2} \\ -l^{2} & -lm & -ln & l^{2} & lm & ln \\ -lm & -m^{2} & -mn & lm & m^{2} & mn \\ -ln & -mn & -n^{2} & ln & mn & n^{2} \end{bmatrix} \]

Example

alt text

对于杆 \(1\)\(\theta = 90^{\circ},C= 0,S=1\) ,对应的 Global 刚度矩阵:

\[ \mathbf{k}_{1} = \frac{EA}{L}\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \]

对于杆 \(2\) \(\theta =0^{\circ},C=1,S=0\),对应的 Global 刚度矩阵:

\[ \mathbf{k}_{2} = \frac{EA}{L} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

对于杆 \(3,\theta =45^{\circ},C = \sqrt{ 2 } /2,S =\sqrt{ 2 } /2\) 对应的 Global 刚度矩阵

\[ \mathbf{k}_{3} =\frac{EA}{L}\begin{bmatrix} 0.5 & 0.5 & -0.5 & -.05 \\ 0.5 & 0.5 & -0.5 & -0.5 \\ -0.5 & -0.5 & 0.5 & 0.5 \\ -0.5 & -0.5 & 0.5 & 0.5 \end{bmatrix} \]

装配后的矩阵

\[ \frac{EA}{L} \begin{bmatrix} 0.5 & 0.5 & 0 & 0 & -0.5 & -0.5 \\ 0.5 & 1.5 & 0 & -1 & -0.5 & -0.5 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 \\ -0.5 & -0.5 & -1 & 0 & 1.5 & 0.5 \\ -0.5 & -0.5 & 0 & 0 & 0.5 & 0.5 \end{bmatrix} \begin{Bmatrix} u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \\ u_{3} \\ v_{3} \\ \end{Bmatrix} =\begin{Bmatrix} F_{1X} \\ F_{1Y} \\ F_{2X} \\ F_{2Y} \\ F_{3X} \\ F_{3Y} \end{Bmatrix} \]

引入边界条件,此时有两个特殊的边界条件:\(v_{3}' =0,F_{3x'}=0\),对应几何关系

\[ \begin{align} u_{3}-v_{3} &= 0 \\ F_{3X}-F_{3Y} &= 0 \end{align} \]

其余边界条件: \(u_{1} =v_{1}=v_{2} =0,F_{2X}=P\) ,对应待定方程:

\[ \frac{EA}{L}\begin{bmatrix} 1 & -1 & 0 \\ -1 & 1.5 & 0.5\\ 0 & 0.5 & 0.5 \end{bmatrix}\begin{Bmatrix} u_{2} \\ u_{3} \\ u_{3} \end{Bmatrix}= \begin{Bmatrix} P \\ F_{3X} \\ F_{3X} \end{Bmatrix} \]

带入求解即可

Beam

alt text

与材料力学中不同,在有限元方法中,我们定义力沿坐标轴正方向为正,力矩逆时针为正

  • 挠曲线: \(v(x,t)\)
  • 转角:\(\theta = \frac{\partial v}{\partial x}\)
  • 弯矩: \(M(x,t) = E(x)I(x)\frac{\partial^2 v}{\partial^2 x}\)
  • 剪力:\(P(x,t) = \frac{\partial M}{\partial x}\)
  • 分布力:\(f(x,t) =\frac{\partial P}{\partial x}\)

对于一个梁单元,其有四个自由度(两端挠度和转角)

挠度

\[ v(x) = a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3} \]

引入边界条件:

\[ \begin{align} v(0) = v_{i}&,v(L)= v_{j } \\ \frac{{\rm{d}} v }{{\rm {d}} x }(x=0) = \theta_{i}&,\frac{{\rm{d}} v }{{\rm {d}} x }(x=L)=\theta_{j} \end{align} \]

解得:

\[ \begin{align} &a_{0}=v_{i} \\ &a_{1} = \theta i \\ &a_{2} = -\frac{3}{L^{2}}(v_{i}-v)-\frac{1}{L}(2\theta_{i}+\theta_{j}) \\ &a_{3} = \frac{2}{L}(v_{i}-v_{j})+\frac{1}{L^{2}}(\theta_{i}+\theta_{j}) \end{align} \]

型函数

\[ v=N_{1}v_{i}+N_{2}\theta_{i}+N_{3}v_{j}+N_{4}\theta_{j} \]
\[ \begin{align} &N_{1}(x)=1-3 \frac{x^{2}}{L^{2}}+2\frac{x^{3}}{L^{3}} \\ &N_{2}(x) = x - 2\frac{x^{2}}{L}+\frac{x^{3}}{L^{2}} \\ &N_{3}(x)=3\frac{x^{2}}{L^{2}}-2 \frac{x^{3}}{L^{3}} \\ &N_{4}(x) =- \frac{x^{2}}{L}+ \frac{x^{3}}{L^{2}} \end{align} \]

Tip

注意前面所讲,FEM 给出的解在节点上是准确的,但是节点和节点之间不一定是准确的,对于受均布载荷的梁方程,根据常微分理论对应位移函数应该是一个四次多项式,型函数给出的位移解最多为三次多项式。

待定方程

\[ \frac{EI}{L^{3}}\begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix}\begin{Bmatrix} v_{i} \\ \theta_{i} \\ v_{j} \\ \theta_{j} \\ \end{Bmatrix} =\begin{Bmatrix} F_{i} \\ M_{i} \\ F_{j} \\ M_{j} \end{Bmatrix} \]

能量法求解平衡方程

alt text

对挠度取二阶导数

\[ \frac{{\rm{d}} ^{2}v }{{\rm {d}} x^{2} } = \frac{{\rm{d}} ^{2} }{{\rm {d}} x^{2} } (\mathbf{Nu})=\mathbf{Bu} \]

其中

\[ \begin{align} \mathbf{B}&= \frac{{\rm{d}} ^{2} }{{\rm {d}} x^{2} } \mathbf{N} = \begin{bmatrix} N_{1}'' & N_{2}'' & N_{3}'' & N_{4}'' \end{bmatrix} \\ &=\begin{bmatrix} -\frac{6}{L^{2}}+\frac{12x}{L^{3}} & -\frac{4}{L}+\frac{6x}{L^{2}} & \frac{6}{L^{2}}-\frac{12x}{L^{3}} & -\frac{2}{L}+\frac{6x}{L^{2}} \end{bmatrix} \end{align} \]

应力应变:

\[ \begin{align} &\varepsilon_{x} = -y \frac{{\rm{d}} ^{2} v}{{\rm {d}} x^{2} } -y\mathbf{Bu} \\ &\sigma_{x}=E\varepsilon_{x} = - yE\mathbf{Bu} \end{align} \]

应变能:

\[ \begin{align} U&=\frac{1}{2}\iiint_{V}\sigma_{x}\varepsilon_{x}dV =\frac{1}{2}\int_{x}\iint_{A}\sigma_{x}^{T}\varepsilon_{x}\,\mathrm{d}A\mathrm{dx} \\ &=\frac{1}{2}\int_{x}\iint_{A}y^{2}\mathbf{u}^{T}\mathbf{B}^{T}E\mathbf{Bu}\, \mathrm{d}A\mathrm{d}x = \frac{1}{2}\mathbf{u}^{T}\int_{0}^{L}\mathbf{B}^{T}EI\mathbf{B}\,\mathrm{d}x\mathbf{u} \end{align} \]

外力施加的势能

\[ \Omega = -\mathbf{u}^{T}\mathbf{p}-\iint_{S}\mathbf{u}^{T}\mathbf{N}_{s}^{T}T_{y}dS = -\mathbf{u}^{T}\mathbf{p}-\mathbf{u}^{T}\int_{0}^{L} \mathbf{N}_{s}^{T}bT_{y} \, {\rm d} x \]

最小势能原理给出

\[ \begin{align} &\frac{\delta(U+\Omega)}{\delta \mathbf{u}^{T}}=0 \\ \implies&\left(\int_{0}^{L}\mathbf{B}^{T}EI\mathbf{B}\,\mathrm{d}x\right)\mathbf{u} = \mathbf{p}+\int_{0}^{L} \mathbf{N}_{s}^{T}bT_{y} \, {\rm d} x \end{align} \]

一般取 \(bT_{y}\) 为作用在梁上的载荷或力


Example

将一个均布载荷转换成了作用在节点上的力和弯矩:

alt text

\[ \int_{0}^{L} \mathbf{N}_{s}^{T}bT_{y} \, {\rm d} x = \int_{0}^{L} \mathbf{N}_{s}^{T}q \, {\rm d} x = q \int_{0}^{L}\begin{Bmatrix} 1-3 \frac{x^{2}}{L^{2}}+2\frac{x^{3}}{L^{3}} \\ x - 2\frac{x^{2}}{L}+\frac{x^{3}}{L^{2}} \\ 3\frac{x^{2}}{L^{2}}-2 \frac{x^{3}}{L^{3}} \\ - \frac{x^{2}}{L}+ \frac{x^{3}}{L^{2}} \end{Bmatrix}dx = \begin{Bmatrix} \frac{qL}{2} \\ \frac{qL^{2}}{12} \\ \frac{qL}{2} \\ -\frac{qL^{2}}{12} \end{Bmatrix} \]
Example

alt text

对于作用在梁上一点的力,我们可以采用 Dirac 函数 处理。对于上述情况,在梁上 \(x= \frac{L}{2}\) 处作用力 \(F= P\) ,取 \(\delta\) 函数 \(\delta\left( \frac{L}{2} \right)\) ,则

\[ \int_{0}^{L} \mathbf{N}_{s}^{T}P\delta\left( \frac{L}{2} \right) \, {\rm d} x = P\int_{0}^{L}\delta \left( \frac{L}{2} \right) \begin{Bmatrix} 1-3 \frac{x^{2}}{L^{2}}+2\frac{x^{3}}{L^{3}} \\ x - 2\frac{x^{2}}{L}+\frac{x^{3}}{L^{2}} \\ 3\frac{x^{2}}{L^{2}}-2 \frac{x^{3}}{L^{3}} \\ - \frac{x^{2}}{L}+ \frac{x^{3}}{L^{2}} \end{Bmatrix}dx = \begin{Bmatrix} -\frac{P}{2} \\ -\frac{PL}{8} \\ -\frac{P}{2} \\ \frac{PL}{8} \end{Bmatrix} \]

alt text

如果梁上作用横向力,则引入轴向的自由度(也就是在上述梁分析方法的基础上增加杆的分析),此时自由度为 \(6\) ,对应刚度矩阵方程:

\[ \begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{12EI}{L^3} & \frac{6EI}{L^2} & 0 & -\frac{12EI}{L^3} & \frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{4EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{2EI}{L} \\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\ 0 & -\frac{12EI}{L^3} & -\frac{6EI}{L^2} & 0 & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{4EI}{L} \end{bmatrix}\begin{Bmatrix} u_{i} \\ v_{i} \\ \theta_{i} \\ u_{j} \\ v_{j} \\ \theta_{j} \end{Bmatrix}= \begin{Bmatrix} F_{ix} \\ F_{iy} \\ M_i \\ F_{jx} \\ F_{jy} \\ M_j \end{Bmatrix} \]

Tip

如果梁的某一端为弹性支撑(弹簧),其自由度为 4 (梁的自由度)+ 1(弹簧的自由度) = 5 ,我们依旧可以装配法装配我们的刚度矩阵

Example

alt text 先将均布载荷转换成作用在节点上的力和力矩。取 \(F_{2y}=-f,M_{2}=m,\left( f=\frac{pL}{2},m = \frac{pL^{2}}{12} \right)\) ,刚度矩阵方程

\[\begin{align} &\frac{EI}{L^{3}}\begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix}\begin{Bmatrix} 0\\ 0\\ v_{2} \\ \theta_{2} \\ \end{Bmatrix} =\begin{Bmatrix} F_{1y} \\ M_{1} \\ -f \\ m \end{Bmatrix} \\ \implies & \frac{EI}{L^{3}}\begin{bmatrix} 12 & -6L \\ -6L & 4L^{2} \end{bmatrix} \begin{Bmatrix} v_{2} \\ \theta_{2} \end{Bmatrix} = \begin{Bmatrix} -f \\ m \end{Bmatrix} \\ \implies& \begin{Bmatrix} v_{2} \\ \theta_{2} \end{Bmatrix} =\begin{Bmatrix} -\frac{pL^{4}}{8EI} \\ -\frac{pL^{3}}{6EI} \end{Bmatrix} \end{align} \]

如果要求取作用在作用在 \(1\) 处的反作用力,先求取 \(F_{1y},M_{1}\)

\[ \begin{Bmatrix} F_{1y} \\ M_{1} \end{Bmatrix}= \frac{EI}{L^{3}}\begin{bmatrix} -12 & 6L \\ -6L & 2L^{2} \end{bmatrix}\begin{Bmatrix} v_{2} \\ \theta_{2} \end{Bmatrix} = \begin{Bmatrix} \frac{pL}{2} \\ \frac{5pL^{2}}{12} \end{Bmatrix} \]

但注意此时求出来的是在节点 \(1\) 总的作用力,要扣除均布载荷的作用效果

\[ \begin{Bmatrix} F'_{1y} \\ M_{1} \end{Bmatrix} = \begin{Bmatrix} \frac{pL}{2} \\ \frac{5pL^{2}}{12} \end{Bmatrix}- \begin{Bmatrix} -\frac{pL}{2} \\ -\frac{pL^{2}}{12} \end{Bmatrix}= \begin{Bmatrix} {pL} \\ \frac{pL^{2}}{2} \end{Bmatrix} \]

alt text

考虑带有铰链的梁,铰链使得梁在铰接处的斜率不连续。因此,我们将其拆分成两个部分,将铰接点归入某一部分处理,构造一个新的刚度矩阵,而对于另一部分,由于不包含铰接点,所以视作正常的梁问题

先考虑右端的梁,对于铰接处,其满足 \(\theta_{j}\neq 0,M_{j}=0\) ,由于作用在节点的弯矩为零,做如下分块矩阵

\[ \frac{EI}{L^{3}}\left[\begin{array}{ccc:c} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ \hdashline 6L & 2L^{2} & -6L & 4L^{2} \end{array} \right]\begin{Bmatrix} v_{i} \\ \theta_{i} \\ v_{j} \\ \hdashline\theta_{j} \\ \end{Bmatrix} =\begin{Bmatrix} F_{i} \\ M_{i} \\ F_{j} \\ \hdashline M_{j}=0 \end{Bmatrix} \]

简写成如下形式

\[ \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}\begin{Bmatrix} d_{1} \\ d_{2} \end{Bmatrix} = \begin{Bmatrix} f_{1} \\ f_{2}=0 \end{Bmatrix} \]

可以解得

\[ \begin{align} d_{2} &= K_{22}^{-1}(f_{2}-K_{21}d_{1}) \\ (K_{11}-K_{12}K^{-1}_{22}K_{21})d_{1}&= f_{1} \end{align} \]

有第二个式子可以推出

\[ \frac{3EI}{L^{3}}\begin{bmatrix} 1 & L & -1 \\ L & L^{2} & -L \\ -1 & -L & 1 \end{bmatrix}\begin{Bmatrix} v_{i} \\ \theta_{i} \\ v_{j} \end{Bmatrix} =\begin{Bmatrix} F_{iy} \\ M_{i} \\ F_{jy} \end{Bmatrix} \]

扩展成刚度矩阵(这是为了后面能够装配全局刚度矩阵,但是要保持 \(M_{j}=0\)

\[ \frac{3EI}{L^{3}}\begin{bmatrix} 1 & L & -1 & 0\\ L & L^{2} & -L & 0\\ -1 & -L & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}\begin{Bmatrix} v_{i} \\ \theta_{i} \\ v_{j} \\ \theta_{j} \end{Bmatrix} =\begin{Bmatrix} F_{iy} \\ M_{i} \\ F_{jy} \\ M_{j} \end{Bmatrix} \]

如果我们将铰接点归入左端处理的话,则上两个方程改为:

\[ \frac{3EI}{L^{3}}\begin{bmatrix} 1 & -1 & L \\ -1 & 1 & -L \\ L & -L & L^{2} \end{bmatrix}\begin{Bmatrix} v_{i} \\ v_{j}\\ \theta_{j} \\ \end{Bmatrix} =\begin{Bmatrix} F_{iy} \\ F_{jy} \\ M_{j} \\ \end{Bmatrix} \]
\[ \frac{3EI}{L^{3}}\begin{bmatrix} 1 &0 & -1 & L \\ 0 & 0 & 0 & 0 \\ -1 &0 & 1 & -L \\ L & 0 & -L & L^{2} \end{bmatrix}\begin{Bmatrix} v_{i} \\ \theta_{i} \\ v_{j}\\ \theta_{j} \\ \end{Bmatrix} =\begin{Bmatrix} F_{iy} \\ M_{i} \\ F_{jy} \\ M_{j} \\ \end{Bmatrix} \]
Example

alt text

我们将铰链归入右端,则可以写出

\[ \mathbf{k_{1}=}\frac{3EI}{a^{3}}\begin{bmatrix} 1 & a & -1 & 0\\ a & a^{2} & -a & 0\\ -1 & -a & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
\[ \mathbf{k}_{2} = \frac{EI}{b^{3}}\begin{bmatrix} 12 & 6b & -12 & 6b \\ 6b & 4b^{2} & -6b & 2b^{2} \\ -12 & -6b & 12 & -6b \\ 6b & 2b^{2} & -6b & 4b^{2} \end{bmatrix} \]

装备后的刚度矩阵方程

\[ EI \begin{bmatrix} \frac{3}{a^3} & \frac{3}{a^2} & -\frac{3}{a^3} & 0 & 0 & 0 \\ \frac{3}{a^2} & \frac{3}{a} & -\frac{3}{a^2} & 0 & 0 & 0 \\ -\frac{3}{a^3} & -\frac{3}{a^2} & \frac{3}{a^3} + \frac{12}{b^3} & \frac{6}{b^2} & \frac{12}{b^3} & \frac{6}{b^2} \\ 0 & 0 & \frac{6}{b^2} & \frac{4}{b} & -\frac{6}{b^2} & \frac{2}{b} \\ 0 & 0 & -\frac{12}{b^3} & -\frac{6}{b^2} & \frac{12}{b^3} & -\frac{6}{b^2} \\ 0 & 0 & \frac{6}{b^2} & \frac{2}{b} & -\frac{6}{b^2} & \frac{4}{b} \end{bmatrix} \begin{Bmatrix} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \\ v_3 \\ \theta_3 \end{Bmatrix} = \begin{Bmatrix} F_{1y} \\ M_1 \\ F_{2y} \\ M_2 \\ F_{3y} \\ M_3 \end{Bmatrix} \]

引入边界条件,解出

\[ \begin{Bmatrix} v_{2} \\ \theta_{2} \end{Bmatrix} =\begin{Bmatrix} -a^{3}b^{3}P / [3(b^{3}+a^{3})EI] \\ a^{3}b^{2}P / [2(b^{3}+a^{3})EI] \end{Bmatrix} \]

复杂梁

alt text

与杆类似,梁的二维变换满足:

\[ \begin{Bmatrix} u_{i}' \\ v_{i} '\\ \theta_{i}'\\ u_{j} '\\ v_{j}' \\ \theta_j' \end{Bmatrix} =\begin{bmatrix} C & S & 0 & 0 & 0 & 0 \\ -S & C & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0& C & S & 0\\ 0 & 0 & 0 & -S & C & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}\begin{Bmatrix} u_{i} \\ v_{i} \\ \theta_{i} \\ u_{j} \\ v_{j} \\ \theta_{j} \end{Bmatrix}\triangleq \mathbf{u}'=\mathbf{Tu} \]

同样的我们有: \(\mathbf{f}'=\mathbf{Tf}\)

刚度矩阵方程

\[ \begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{12EI}{L^3} & \frac{6EI}{L^2} & 0 & -\frac{12EI}{L^3} & \frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{4EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{2EI}{L} \\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\ 0 & -\frac{12EI}{L^3} & -\frac{6EI}{L^2} & 0 & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{4EI}{L} \end{bmatrix} \begin{Bmatrix} u_{i}' \\ v_{i} '\\ \theta_{i}'\\ u_{j} '\\ v_{j}' \\ \theta_j' \end{Bmatrix} =\begin{Bmatrix} F_{ix} '\\ F_{iy} '\\ M_i '\\ F_{jx}' \\ F_{jy} '\\ M_j' \end{Bmatrix}\triangleq \mathbf{k}'\mathbf{u}' = \mathbf{f'} \]

可得刚度变换矩阵:

\[ \mathbf{k} = \mathbf{T}^{T}\mathbf{k'T} \]

alt text


三维情况:

\[ u_{i} = \begin{bmatrix} u_{i} & v_{i} & w_{i} & \theta_{ix} & \theta_{iy} & \theta_{iz} \end{bmatrix}^{T} \]

三维情况需要考虑扭转的作用;同样的,我们定义根据右手法则指向正方向为正。 alt text

扭转对应的刚度矩阵: $$ \frac{GJ}{L}\begin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix} $$ 其中 \(G\) 为剪切模量,\(J\) 为极惯性矩

alt text

Plate

板可以视作梁的二维扩展形式。

  • 只能承受法向载荷(transverse loading)
  • 初始状态是平的(非平的板称为壳(shell))
  • 板可以抵抗两个轴方向的弯曲和扭转

基本假设:

  1. 厚度远小于板的长度或宽度(否则需要考虑切应力的作用)
  2. 挠度远小于厚度(否则需要考虑板内的屈曲作用,对于 von Karman 板)

基尔霍夫假设(Kirchhoff assumptions) : (PS:来自弹性力学)

  1. 变形前垂直于薄板中面的直线段(法线),在薄板变形后仍保持为直线,且垂直于弯曲变形后的中面,其长度不变。如果我们选取薄板中面作为 \(Oxy\) 坐标平面,则有 \(\gamma_{xz}=0,\gamma_{yz} =0,\varepsilon_{z} = 0\)
  2. 与其他应力分量相比,垂直于中面的正应力 \(\sigma_{z}\) 和指向 \(z\) 轴的切应力 \(\tau_{xz},\tau_{yz}\) 很小,在计算应变时可略去不计。
  3. 薄板弯曲变形时,中面内各点只有垂直位移 \(w\) ,而无 \(x\) 方向和 \(y\) 方向的位移,因此中面应变分量 \(\varepsilon_{x},\varepsilon_{y},\gamma_{xy}\) 均等于零,即中面无应变发生,称中面内位移函数 \(w(x,y)\) 称为挠度函数

根据基尔霍夫假设给出

  • 位移场:
\[ \begin{align} \\ &u = -z\frac{\partial w }{\partial x } &v =-z\frac{\partial w }{\partial y } \end{align} \]
  • 应变场:
\[ \varepsilon_{x}= - \frac{\partial^{2}w }{\partial x^{2} } z =-z \kappa_{x} \quad \varepsilon_{y} = - \frac{\partial^{2} w}{\partial y^{2} }z = -z \kappa_{y} \quad \gamma_{xy}= -2 \frac{\partial^{2}w }{\partial x \partial y } z =-z \kappa_{xy} \]
  • 应力场:
\[ \begin{align} &\sigma _{x} = \frac{E}{1-\nu^{2}}(\varepsilon_{x}+\nu \varepsilon_{y}) \\ &\sigma_{y} = \frac{E}{1-\nu^{2}}(\varepsilon_{y}+\nu \varepsilon_{x}) \\ &\tau_{xy}=G\gamma_{xy} \end{align} \]
  • 弯矩:
\[ M_{x}=D(\kappa_{x}+\nu \kappa_{y}) \quad M_{y} = D(\kappa_{y}+\nu \kappa_{x}) \quad M_{xy} =\frac{D(1-\nu)}{2}\kappa_{xy} \]

其中

\[ D = \frac{Et^{3}}{12(1-\nu^{2})} \]

称为抗弯刚度。

板满足的物理方程为:

\[ D \left( \frac{\partial^{4}w }{\partial x^{4} } + \frac{2\partial^{4}w }{\partial x^{2}\partial y^{2} } +\frac{\partial^{4}w }{\partial y^{4} } \right) = q \]
  • 应变能:
\[ U = \frac{1}{2}\int(M_{x}\kappa_{x}+M_{y}\kappa_{y}+M_{xy}\kappa_{xy})\mathrm{d}A \]

对于一个节点,其节点位移矩阵

\[ \left\{ d_{i} \right\} = \begin{Bmatrix} w_{i} \\ \theta_{xi} \\ \theta_{yi} \end{Bmatrix} \]

每个节点有三个自由度,对于一个板单元,我们有 \(12\) 个自由度,定义:

\[ \theta_{x} = + \frac{\partial w }{\partial y } \quad \theta_{y} = - \frac{\partial w }{\partial x } \]
  • 总单位位移矩阵:
\[ \left\{ d \right\} = \left\{ [d_{i}] \quad [d_{j}]\quad [d_{m}]\quad[d_{n}] \right\} ^{T} \]
  • 位移插值函数:
\[\begin{align} w =& a_{1} +a_{2}x + a_{3} y+a_{4}x^{2}+a_{5}xy+a_{6} y^{2}+a_{7}x^{3}+a_{8}x^{2}y \\ &+a_{9}xy^{2}+a_{10}y^{3}+a_{11}x^{3}y +a_{12}xy^{3} \end{align} \]

将位移插值函数带入到节点位移矩阵可得系数方程,给出矩阵形式:

\[ \left\{ \psi \right\} = [P] \left\{ a \right\} \]

为每一个节点计算如上方程,整合可得:

\[ \left\{ d \right\} = [C]\left\{ a \right\} \implies \left\{ a \right\} =[C]^{-1}\{d\} \]

联系之前的系数方程有:

\[ \left\{ \psi \right\} = [P]\left\{ a \right\} \implies \left\{ \psi \right\} = [P][C]^{-1}\left\{ d \right\} \]

定义形函数

\[ [N]= [P][C]^{-1} \]

定义曲率矩阵:

\[ \left\{ \kappa \right\} = \begin{Bmatrix} \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \end{Bmatrix}= \begin{Bmatrix} -2a_{4}-6a_{7}x-2a_{8}y-6a_{11}xy \\ -2a_{6}-2a_{9}x-6a_{10}y-6a_{12}xy \\ -2a_{5}-4a_{8}x-4a_{9}-6a_{11}x^{2}-6a_{12}y^{2} \end{Bmatrix}=[Q]\left\{ a \right\} \]

由于 \(\left\{ a \right\} = [C]^{-1}\left\{ d \right\}\),则曲率矩阵

\[ \left\{ \kappa \right\} =[Q]\left\{ a \right\} = [Q][C]^{-1}\left\{d \right\} = [B]\left\{ d \right\} \]

其中 \([B]\) 称为梯度矩阵。

可以导出弯矩方程:

\[ \left\{ M \right\} = \begin{Bmatrix} M_{x} \\ M_{y} \\ M_{xy} \end{Bmatrix} = [D]\begin{Bmatrix} \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \end{Bmatrix} = [D][B]\left\{ d \right\} \]

其中 \([D]\) 是本构矩阵,对于各向同性材料,满足:

\[ [D] = \frac{Et^{3}}{12(1-\nu^{2})}\begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \]

刚度矩阵有如下形式给出:

\[ [k] = \iint[B]^{T}[D][B]\mathrm{d}x\mathrm{d}y \]

分布载荷产生的表面力矩阵:

\[ \left\{ F_{s} \right\} = \iint[N_{s}]^{T}q \mathrm{d}x\mathrm{d}y \]

对于在大小在 \(2b\times2c\) 的单元表面上作用均匀荷载 \(q\) 产生的力和力矩:

\[ \begin{Bmatrix} f_{wi} \\ f_{\theta x i} \\ f_{\theta yi} \end{Bmatrix} = 4cbq \begin{Bmatrix} \frac{1}{4} \\ -\frac{c}{12} \\ \frac{b}{12} \end{Bmatrix} \]

组装可得全局矩阵