Heat Problem
Thermal Stress
考虑热应变问题:
\[
\varepsilon_{ij}^{0 }= \alpha \Delta T \delta_{ij}
\]
当弹性体发生温度变化时,弹性体体内各点的微小长度在不受约束的情况下发生正应变 \(\alpha \Delta T\),其中 \(\alpha\) 为线膨胀系数
热应变(thermal strains)并不会产生应力,想象一个受热自由膨胀的物体,其内部并没有应力的产生。
在受热情况下,将本构方程修改成如下形式
\[
{\sigma} = \mathbf{D}({\varepsilon}-{\varepsilon}^{0})
\]
其他物理方程保持不变:
\[
\begin{align}
&{\varepsilon} =\nabla \mathbf{u} \\
&{\sigma}=\mathbf{D}({\varepsilon}-{\varepsilon}^{0}) \\
&\nabla^{T}{\sigma}+\mathbf{f} =0
\end{align}
\]
利用最小势能原理导出刚度矩阵,势能满足:
\[
\Pi_{p} =\underset{ \text{Strain energy} }{ \int_{B} \frac{1}{2}\sigma_{ij}\left( \varepsilon_{ij}-\varepsilon_{ij}^{0} \right) \mathrm{d}V }\underset{ \text{Potential of external forces} }{ -\int_{B} f_{i}u_{i}\mathrm{dV}-\int_{\partial B} \bar{T}_{i}u_{i} \mathrm{d}S }
\]
写成矩阵的形式:
\[
\Pi_{p} =\frac{1}{2}\int_{B}{\varepsilon}^{T}\mathbf{D}{\varepsilon}\mathrm{d}V-\int_{B}{\varepsilon}^{T}\mathbf{D}{\varepsilon}^{0}\mathrm{d}V-\int_{B}\mathbf{u}^{T}\mathbf{f}\mathrm{d}V -\int_{\partial B}\mathbf{u}^{T}\mathbf{T}\mathrm{d}S +\int_{B}({\varepsilon}^{0})^{T}\mathbf{D}{\varepsilon}^{0}\mathrm{d}V
\]
势能最小原理给出:
\[
\delta \Pi_{p} =0
\]
由于最后一项积分结果为常数,所以不纳入考虑,假定
\[
\mathbf{u} =\mathbf{Nd}_{e} \implies {\varepsilon} = \left( \nabla \mathbf{N} \right) \mathbf{d}_{e} = \mathbf{B}\mathbf{d}_{e}
\]
即满足我们最开始的假设带入后取对 \(\mathbf{d}_{e}^{T}\) 的偏导为零可得
\[
\left( \int_{B}\mathbf{B}^{T}\mathbf{DB} \mathrm{d}V\right) \mathbf{d_{e}} = \left( \int_{B}\mathbf{N}^{T}\mathbf{f}\mathrm{d}V \right)+\left( \int_{\partial B}\mathbf{N}^{T}\mathbf{T}\mathrm{d}S \right) + \underset{ \mathbf{f}_{T} }{ \int_{B}\mathbf{B}^{T}\mathbf{D}{\varepsilon}^{0}\mathrm{d}V }
\]
这就是元素满足的刚度方程,将其装配后可得全局刚度方程,他与原来的方程相比多了一项由温度变化引起的力记作 \(\mathbf{f}_{T}\)
如果考虑的是一维杆问题,则:
\[
\mathbf{f_{T}} = \begin{Bmatrix}
-E\alpha\Delta T A \\
E\alpha\Delta T A
\end{Bmatrix}
\]
\(A\) 是横截面积。
二维情况:
\[
\left\{ \varepsilon^{0} \right\} = (1+\nu )\left\{ \begin{align}
\alpha&\Delta T \\
\alpha&\Delta T \\
&0
\end{align} \right\}
\]
\[
\left\{ \varepsilon^{0} \right\} = \left\{ \begin{align}
\alpha&\Delta T \\
\alpha&\Delta T \\
&0
\end{align} \right\}
\]
对于平面应力问题,我们考虑 CST 元素,此时热应力的影响被简化为:
\[
\left\{ \mathbf{f}_{T} \right\} = \mathbf{B}^{T}\mathbf{D}{\varepsilon} tA
\]
带入求解可得:
\[
\left\{ \mathbf{f}_{T} \right\} = \frac{\alpha EAt \Delta T}{2(1-\nu)}\begin{bmatrix}
\beta_{i} & \gamma_{i} & \beta_{j} & \gamma_{j} & \beta_{m} & \gamma_{m}
\end{bmatrix}^{T}
\]
对于轴对称元素,热应力满足:
\[
\left\{ \mathbf{f}_{T} \right\} = 2\pi \bar{r}A \bar{\mathbf{B}}^{T}\mathbf{D}{\varepsilon}^{0}
\]
其中 \(\bar{r}\) 表示质心,\(\bar{\mathbf{B}}^{T}\) 表示质心 \(\bar{z}\) 对应的应变矩阵
Heat Transfer
多物理场的有限元方法
- 寻找控制方程(Governing equations)和边界条件(boundary conditions)
- 使用变分法建立控制方程的弱形式及系统总势能
- 选择合适的单元类型,并据此确定基本变量的插值函数(形函数)
- 利用基本变量的插值函数构造系统总势能
- 最小化系统总势能,以得到单元刚度矩阵和节点“力”向量
- 汇总单元刚度矩阵和节点“力”向量,建立全局线性方程组
一维Fourier定律:
\[
q_{x} =-K_{xx} \frac{{\rm{d}} T }{{\rm {d}} x }
\]
能量守恒方程:
\[
\begin{align}
&E_{\mathrm{in}}+E_{\mathrm{generate}} = \Delta U +E_{\mathrm{out}}\\
\implies& q_{x}A \mathrm{d}t +QA \mathrm{d}x \mathrm{d}t = \Delta U +(q_{x}+\mathrm{d}q_{x})A\mathrm{d}t
\end{align}
\]
内能变化可以表示:
\[
\Delta U = c \rho A \mathrm{d}x\mathrm{d}T
\]
将上述带入可得热传导方程:
\[
K_{xx} \frac{{\rm{d}} ^{2}T }{{\rm {d}} x^{2} } +Q = c\rho \frac{{\rm{d}} T }{{\rm {d}} t }
\]
稳定状态时退化成:
\[
K_{xx} \frac{{\rm{d}} ^{2}T }{{\rm {d}} x^{2} } +Q =0
\]
如果在二维情况,可以拓展成:
\[
K_{xx}\frac{\partial^{2}T }{\partial x^{2}} +K_{yy}\frac{\partial^{2}T }{\partial y^{2} } +Q =0
\]
热问题有限元法
如果用有限元方法求解热传导问题,此时系统势能写作:
\[
\Pi_{p} = \underbrace{ \frac{1}{2}\int_{A} \left[ K_{xx} \left( \frac{\partial T }{\partial x } \right) ^{2}+K_{yy} \left( \frac{\partial T }{\partial y } \right)^{2} \right]\mathrm{dA} }_{U} - \underbrace{\int_{A}QT \mathrm{d}A }_{\Omega _{Q}}- \underbrace{ \int_{\partial S}T\bar{q} \mathrm{d}s }_{\Omega_{q}}
\]
此时变量只有 \(T\) ,变分原理给出:
\[
\delta \Pi_{p}= 0
\]
首先需要针对问题选择合适的元素,然后为温度选择合适的形函数:
\[
T(x,y) = \sum_{i=1}^{n}N_{i}T_{i} \triangleq \mathbf{NT}_{d}
\]
\(\mathbf{T}_{d}\) 表示节点温度,将上述表达式带回势能,求出应变矩阵:
\[
\begin{align}
\Pi_{p} &= \frac{1}{2}\int_{A}\left[ K_{xx}\left( \frac{\partial T }{\partial x } \right) ^{2}+K_{yy} \left( \frac{\partial T }{\partial y } \right)^{2} \right]\mathrm{d}A -\int_{A}QT \mathrm{d}A -\int_{\partial S} T \bar{q} \mathrm{d}S \\
&= \frac{1}{2}\int_{A} \begin{Bmatrix}
\frac{\partial T }{\partial x } \\
\frac{\partial T }{\partial y }
\end{Bmatrix}^{T}\begin{bmatrix}
K_{xx } & 0 \\
0 & K_{yy}
\end{bmatrix}\begin{Bmatrix}
\frac{\partial T }{\partial x } \\
\frac{\partial T }{\partial y }
\end{Bmatrix} \mathrm{d}A - \int _{A}QT \mathrm{d}A -\int_{\partial S}T \bar{q} \mathrm{d}S \\
&= \frac{1}{2}\mathbf{T}_{d}^{T}\left( \int_{A}\mathbf{B}^{T}\mathbf{KB}\mathrm{d}A \right) \mathbf{T}_{d} -\mathbf{T}_{d}^{T}\left( \int_{A}Q \mathbf{N}^{T}\mathrm{d}A \right) -\mathbf{T}_{d}^{T}\left( \int_{\partial S} \bar{q} \mathbf{N}^{T}\mathrm{d}S \right)
\end{align}
\]
其中:
\[
\begin{Bmatrix}
\frac{\partial T }{\partial x } \\
\frac{\partial T }{\partial y }
\end{Bmatrix} = \mathbf{B}\mathbf{T}_{d} \quad \mathbf{B} = \begin{bmatrix}
\frac{\partial N_{1} }{\partial x } & \frac{\partial N_{2} }{\partial x } & \cdots \\
\frac{\partial N_{1} }{\partial y } & \frac{\partial N_{2} }{\partial y } & \cdots
\end{bmatrix}
\]
根据最小势能原理可得刚度矩阵(此时考虑一个厚度为 \(h\) 的板):
\[
\mathbf{k}_{e} =h \int_{A} \mathbf{B}^{T}\mathbf{KB} \mathrm{d}x\mathrm{d}y
\]
转换成等参形式:
\[
\mathbf{k}_{e} =h \int^{1}_{-1}\int^{1}_{-1}\mathbf{B}^{T}\mathbf{KB}\lvert \mathbf{J} \rvert \mathrm{d} s \mathrm{d}t = \sum_{i=1}^{I_{p}} \sum_{j=1}^{I_{p}} \mathbf{B}^{T}(s_{i},t_{j})\mathbf{KB}(s_{i},t_{j})\lvert \mathbf{J}(s_{i},t_{i})\rvert\alpha_{i}\alpha_{j}
\]
等效外力矩阵:
\[
\mathbf{P}_{e} =\underset{ \text{Internal heat source} }{ \int_{A}Q \mathbf{N}^{T}\mathrm{d}A }+\underset{\text{Surface heat flow into the element} }{ \int_{\partial S} \bar{q} \mathbf{N}^{T}\mathrm{d}S }
\]
所以得到此时的“刚度”方程:
\[
\mathbf{k}_{e} \mathbf{T}_{d} = \mathbf{P}_{e}
\]
现在讨论边界条件:考虑左端 \(x_{A}\) 流入热流,右端 \(x_{B}\) 置放在恒温 \(\bar{T}\) 环境,对应第一种和第二种边界条件,给出:
\[
-K_{xx} \frac{{\rm{d}} T }{{\rm {d}} x } =\bar{q}_{x}
\]
\[
T= \bar{T}
\]
如果是二维情况,第二种边界条件为:
\[
\bar{q}_{n} = K_{x x} \frac{\partial T }{\partial x } n_{x}+K_{yy} \frac{\partial T }{\partial y } n_{y}
\]
\(n_{x}\) 和 \(n_{y}\) 分别为热流法向到 \(x\) 轴和 \(y\) 轴的投影